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Tricritical dynamics of multicomponent fluids 
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Abstract. Tricritical anomalies of transport coefficients of diffusive type in multicomponent 
fluids are studied theoretically for the thermodynamic model system due to Griffiths. 
Transport anomalies are characterized by the two critical modes whose decay rates behave 
as [ - 3 ,  ( being the range of correlation of critical fluctuations. Usefulness of the variables 
having a diagonal susceptibility matrix considered by Tisza as well as by Gunton and 
Green in the present problem is indicated. 

1. Introduction 

In the last years higher-order critical points in multicomponent fluids whose possibility 
was first pointed out by Kohnstamm in 1926 have been receiving increasing attention, 
notably by Widom and Griffiths (Widom 1973, Griffiths and Widom 1973, Griffiths 
1974). The important merit of dealing with these systems lies in the fact that the field 
conjugate to the order parameter can be actually controlled. At a time when much is 
understood for equilibrium tricritical behaviour and various tricritical systems are 
identified (Griffiths 1973, and references quoted therein), it is timely to start looking into 
the dynamical behaviour of these systems where, so far, liquid 3He-4He mixture (Kawa- 
saki and Gunton 1972, Grover and Swift 1973) and certain metamagnetic systems (Huber 
1974) have been treated. 

The present paper is concerned with a study of dynamical behaviour near tricritical 
points of multicomponent fluids where we shall limit our discussion to transport pheno- 
mena of vectorial character, namely, diffusion and heat conduction. Recently Griffiths 
(1974) constructed a thermodynamic model of multicomponent fluids of sufficiently 
general character, and this model will be our starting point in the following. After 
describing the equilibrium tricritical behaviour on the basis of the Griffiths model in $ 2  
we will discuss non-equilibrium behaviour in 0 3 with some simplifying assumptions, 
the validity of which will be examined in $ 4. 

2. Equilibrium tricritical behaviour 

Here, the Griffiths thermodynamic model with some necessary modifications and ex- 
tensions is briefly described to the extent needed in this work. We assume a one- 
dimensional order parameter IC/ and construct the singular part of an appropriate 
free energy 0 as 

262 



Tricritical dynamics of multicomponent fluids 263 

The actual value of $ is determined by minimizing Q, with respect to $ and the free energy 
is thus obtained as a function of the 'fields' g ,  , g,, g, and g4, which we denote again as 
Q,(g,, g,, g,, g4). Griffiths notes that @ has the following scaling property: 

Q,(I'p'gl, l'2g*,~"3g3,1v4g4) = w g l $ g 2 ? g 3 3 g 4 )  (2.2) 

(P4 = $. (2.3) 

witht 
5 2 1 

( P 1 =  & -  (P2 = 3 .  (P3 = 2 .  

As far as the thermodynamic model is concerned, it is not necessary, however, that the 
exponents 'pi take the particular values (2.3) but it  is sufficient to assume 

1 > (P1 > (P2 > (P3 > (P4 > 0. (2.4) 

For symmetrical tricritical points g ,  is the field conjugate to the order parameter, 
g2 measures the distance from the I. and triple line whereas g4 is the distance from the 
tricritical point measured parallel to  this line, and g, is zero. In this case the crossover 
exponent 4 is given by 

4 = (Pz/(P4. (2.5) 

Very near the I line (that is, the line of normal critical points) at a finite distance from the 
tricritical point g, and g4 remain finite in general and @(g,, g2) satisfies the scaling pro- 
perty near the normal critical point : 

where, using the conventional notation for normal critical exponents, we have 

$1 = (d+2-~) /2d,  $ 2  = 1/vd, (2.7) 

d being the dimensionality of space. 

region as well takes the following functional form : 
The free energy which satisfies both (2.2) and (2.6) and hence is valid in the crossover 

The scaling behaviour near the tricritical point described here and below has been 
discussed by a number of authors including Riedel (1972), Hankey er a1 (1972) and 
Griffiths (1973). 

We define the density variables mi in the sense of Griffiths and Wheeler (1970) which 
are conjugate to g, as follows : 

In the original Griffiths model (2.1), m j  = $ j  but this will not be used in this work. We 

t These exponents also arise naturally in the renormalization group treatment of tricritcal points due to 
Riedel and Wegner (1972). Their scaling fields pk,, are related to the fields g, by g z k + ,  = pk, [  + constant p k +  ,,, +, , , 
where k = 0, 1 , 2 , .  . . and I = 0, 1. The eigenvalues of the renormalization transformation associated with the 
'eigenvector' pk,l is 2yk.i with yk , l  = 3 - ( k + t l ) .  The exponents yk, l  of the relevant eigenvectors are y o ,  = +. 
y,, = 2, y l I  = $ and y,, = 1, since poo is a constant and p 2 ,  can be eliminated by suitably adjusting an 
additive constant to the order parameter. Hence in the expression for g z k + l  given above only the first term 
is important from the renormalization group point of view and fy,, = ( p Z k + , .  
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will need the wavenumber-dependent susceptibility matrix zij(k) with i, j = 1 ,2 ,3 ,4  
defined by 

(2.10) 

where m,(k) is the Fourier component of fluctuation 6mi(r) of the local values of mi given 
by 

m,(k) = e- ik.  '6m,(r) dr (2.1 1)  I 
and an angular bracket denotes the equilibrium average and V is the system volume. 
We assume that fluctuations of the density variables are characterized by a single length 
5 which has the following scaling form corresponding to (2.8) : 

5 = g;1gy2/'?4)(Y-1I)t* (2.12) 

where 5* is a function ofthe three variables contained in @* of(2.8) and \ J ,  is the equivalent 
of v in the tricritical region and is equal to $ for (2.1). 

Apart from some scaling functions, the singular parts of zij(k) behave as follows. In 
the tricritical region, 

zij(k) 5 k - 7 : ~  +(a regular part) (2.13) 

and near the /. line?, 

(2.14) 

(2.15) 

(2.16) 

The values of ; : j  for (2.3) as well as the expressions of ; t l j  in terms of the usual notation 
are summarized in tables ( l a  and b). 

Combining (2.13) and (2.14) the form of xij(k) valid in the crossover region as well 
can be written down as follows. For i , j  = 1 , 2  

Table 1. (a) Critical exponents y J j  and (b)  critical exponents y, ,  

(4 (b)  

- 3 1 - 1 4 & I  y ( x + ; , ) / z  1 

4 0 2  1 2 

0 -$  3 

- 1 1 - 

t The notations such as y,, were also employed by Fisher (1973) in generalizing the scaling law ideas recently. 



Tricritical dynamics of multicomponent fluids 265 

and for i = 3,4 and j = 1,2,3,4 and in the tricritical region, 

x iJ(k)  = k-":~"'ll$+(a regular part) (2.18) 

where x; is a function of k( and the three variables contained in @* of (2.8). (2.18) reflects 
the fact that the variables m3 and m4 no longer exhibit critical fluctuations on the j. line. 

We now go on to discuss a few more points needed subsequently. 
First we will need the relationship between the scaling variables ( m , , g , )  and the 

physical variables (a,, hi) where the physical field hi is related to g ,  through 
4 

h , =  1 Bi jgJ+hi ,  
j =  1 

(2.19) 

where hi, is the value of hi at the tricritical point, and in contrast to the case treated by 
Griffiths (1974) we allow for more than four physical field variables. Inverting (2.19) with 
i = 1,2,3,4 we have 

g, = g 1 ( h  - h l , ,  h ,  - h 2 , r  h3 - h,,, h4 - h4,). (2.20) 

If there are more than four field variables, the tricritical 'line' is represented parametri- 
cally by the equation 

h ,  = h,,(h, 3 A,. . ' ' 1, (2.21) 

a, = -&D/i?h, for all i. (2.22) 

i = 1,2, 3,4. 

The singular parts of the physical density variables again denoted as a, are defined by 

Or. for i = 1, 2, 3,4 

and for i = $6, 

Both can now be written as 
4 

ai = E CijmJ for all i 
j =  1 

(2.23) 

(2.24) 

(2.25) 

with the coefficients C i j  defined by (2.23) and (2.24). 
The second point is concerned with alternative choices of the variables (g , ,  mi). 

Griffiths (1974) has shown that the singular properties and the phase diagram of his 
thermodynamic model (2.1) and its generalized version satisfying (2.2) and (2.4) remain 
unchanged under the following affine transformation? 

(2.26) 

with D,, = 1 and D i j  = 0 for i < j ,  consequently, ( D -  = 0 for i > j .  A special trans- 
formation of this type is Tisza's restricted unimodular transformation which diagonalizes 
the matrix xi j (k)  (Tisza 1966). This transformation was used recently by Gunton and 

t Griffiths is concerned only near the tricritical point but the statement evidently applies near the i. line for 
the first two variables provided $, > cLz .  
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Green (1971) to construct a hierarchy of nested subspaces of the density variables, each 
of which is characterized by a set of in general degenerate (ie equally singular) diagonal 
elements of the susceptibility matrix ~ ( k ) .  We suppose that such a transformation has 
been carried out for our density variables as well as the spatial Fourier components 
mi&) thereof. We then obtain a set of new variables mi or m;(k)and the new susceptibility 
matrix ~ ' ( k )  which again behaves as (2.13), (2.14) or (2.17), (2.18) with, of course, no off- 
diagonal elements. 

3. Non-equilibrium tricritical behaviour 

Let us consider an N + 1 component fluid with chemical potentials po ,  p l , .  . . , pN where 
the zeroth component is the solvent. N + 2 field variables ho, h ,  , h,, . . . , h,v+ 1 ,  can be 
chosen to be 

(3.1) 

where Mi  is the molecular mass of the ith component and T and p are the temperature 
and the pressure, respectively. Choice of po/Mo as the free energy @ allows us to intro- 
duce the density variables through 

N 
d(po/Mo) = U dp-sdT-  1 cidhi 

i =  1 
(3.2) 

where U and s are the specific volume and the specific entropy, respectively, and ci is the 
mass fraction of the ith component. Since we are concerned with transport phenomena 
of vectorial character, we shall drop pressure hereafter. 

The linearized hydrodynamic equation describing vectorial transport is 
N dS pT-  = - V . (4- 2 hiii) 

at  I =  1 
(3.3) 

(3.4) 
d C .  

p- = - V . i i ,  i = 1,2, . . . ,  N 
a t  

where q is the heat current and ii is the diffusion current of the ith component, and 
N 

i, = - 2 tlijVhj -PiVT 
j =  1 

N 
q = - 2 PiTVhi-;'VT+ x h i i i  

i =  1 i =  1 

(3.5) 

(3.6) 

where we adopted the notation of Landau and Lifshitz (1959) for the Onsager kinetic 
coefficients a, fl and y in generalized form. The correlation function expressions for the 
Onsager kinetic coefficients are (see, for instance, Mistura 1972) 

a . .  = 2- J dr  J dt(l;(r, t ) l j"(O,  0)) 
I J  k,T 0 
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1 f f “  

(3.9) 

where 1; and 1: are the molecular expressions for if and q” - 

form by introducing the N + 1 component currentsj,, j , ,  . . . , j,,, by 

h,i:, respectively. 
In what follows we find it convenient to cast the foregoing in a more symmetrical 

and the N + 1 density variables a,, a , ,  . . . , a, by 

a, = s, a,  = c,, ( i  = 1,2, .  . . , N). (3.1 1 )  

The linearized hydrodynamic equation takes the following simple form : 

(3.12) aa, 
- =  - V . j l  ( i = O , l ,  . . . ,  N) 
dt 

N 
j i  = - L..Vh. 1J J ( i  = 0, 1,. . . , N )  

j = O  

where the new Onsager kinetic coefficients L,, are, 

(3.13) 

Loo = 7 i P T  Lo, = Li, = BiiP,  Lij = uij/P ( i , j  = 1,2, .  . . , N) (3.14) 

and the correlation function expression for L i j  is 

L . .  = dt 5 dr(J:(r, t)Jj”(O, 0)) 
” k,T 

(3.15) 

where J ;  is the molecular expression for j:. 

approximation (Kawasaki 1974) where the current density becomes 
We now study the tricritical anomalies of (3.15) in the simplest mode-coupling 

J:(r, t) = ux(r, t)dai(r, t) (3.16) 

where u x  is the x component of the local velocity and 6ai is the fluctuation of the density 
variable a i .  Here we present a simple-minded treatment and the problems in this treat- 
ment will be discussed in the next section. We assume that the shear viscosity does not 
exhibit a strong critical anomaly (see the next section). Then, any critical divergence of 
L,, arises from strong critical anomalies of the equal-time correlations ( 6a,(r)6aj(0)). 
This allows us to substitute (2.25) into (3.16). If we can assume that the time variation 
of (3.16) is dominated by the viscous relaxation of ux (see the next section), we have 
for the singular contribution to (3.15) which is again denoted as L,,, 

A A  

L i j  = 1 1 Ci,CjnLl,, 
I = 1  r l = l  

where E, ,  is obtained as 

(3.17) 

(3.18) 

Here v* is the kinetic viscosity q / p  and ~ , , ( k )  is given by (2.10). 
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Substituting the behaviour (2.13) and (2.14) into (3.18), the singular contributions 
to L,, arising from fluctuations with wavenumbers of the order of 4 -  ’ behave as follows. 
In the tricritical region, 

and near the 2 line 
Ll j  - ( C l J l ”  

iij 
i.. 11 y . . - v  IJ (i, j = 1,2). 

( i , j  = 1,2) 

with 
greater of ’&- v, and - v, 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

The values of these exponents which correspond to table 1 are now summarized in 
table 2.  We thus find that in the tricritical region only L ,  and E , ,  exhibit clear diver- 
gence and L,, and L , ,  are either finite or at most weakly divergent for the model 
system (2.1). Near the A line, only El  diverges strongly and any divergence of E , ,  will 
be characterized by a small exponent, which is already known (Swift 1968, Kawasaki 
1974). 

Table 2. (a) critical exponents i:, and (b)  critical exponents [,, 
(4 (4 

1 2  3 4 / .  1 2 /  

- 1 1 
2 4 

- 0 -- 1 ’  I+./ Y - ”  ~- V I  
2 

Combining (3.19) and (3.20) and noting (3.12) we can write down a general scaling 
form for L i j  (the singular part only) with i, j = 1 and 2 valid in the crossover region as 
well as follows : 

L , ,  I ]  = g-li~g((PZ/(P4)(l11-i:~)Li*j 2 4 (3.23) 

where 
We conclude this section with two remarks. In Rayleigh scattering experiments we 

will need wavenumber- and frequency-dependent kinetic coefficients Lij(q, w). Since 
the viscous damping dominates the intermediate states, the frequency dependence can 
be ignored. &(q) is then obtained from (3.18) by replacing xi,&) by xil{q-k). The 
scaling b,ehaviour of Lij is again given by (3.23) where now L: also depends upon q t .  

If we use the transformed variables mj(k) discussed at the end of $ 2 ,  the transformed 
Onsager kinetic coefficient matrix Eij(q) becomes diagonal provided the coefficients D i j  
are non-singular and hence their dependence on wavenumbers can be ignoredt. Here 

Gunton and Green (1971) argue that these coefficients are indeed finite at the critical point. Alternatlvely, 
we may suppose that the variables m, are chosen at the outset in such a way that the matrix ~ ( k )  is diagonal. 

- 

is again a function of the variables contained in cl)* of (2.8). 
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the variables m;(k) need not be restricted to the four singular variables near the tri- 
critical point but can be supplemented with non-singular variables so as to  cover the 
entire N +  1 diffusive modes. The linearized macroscopic law equivalent to (3.3) - (3.6) 
takes a simple form in terms of the new density variables, 

n,(k) m;(k)/ [xi i (k)]  ' I 2  (3.24) 

as 

s 
-n,(k, t) = - 
at 

(3.25) 

with 

rij(k) = k 2 ( k B T / p )  L L i A k )  + L ~ ( k ) l / [ x i i ( k ) x j j ( k ) l  ' I 2  (3.26) 

where LE(k) is the finite regular part of the Onsager kinetic coefficient. We now limit 
our consideration to the tricritical region and we will find 

rij(k) - 4 ~ 1 ~  (3.27) 

where the values of the exponents oij are obtained from (2.13), (3.19) and tables l(a and b), 
and the tricritical behaviour of Tijk)  for the model (2.1) is represented symbolically as 

1 4 - 1  5 -  
4-  

5 -  1'2 

4- l i 2  

(3.28) 

where dots merely denote repetition of the respective matrix elements that precede 
them. From this we see that, barring accidental cancellations of terms, the two smallest 
eigenvalues of T(k) behave as [ - 3  in the tricritical region, and the rest as 4'. This 'de- 
generacy' of the first two relaxation rates is understood if we note that for diverging 
Lij including the cases where ( i j  = 0 

(3.29) 

4. Supplementary considerations 

Here we present supplementary considerations needed to close some of the loose ends 
in the simple treatment of the preceding section. The first is concerned with a possible 
critical anomaly of the shear viscosity, whose correlation function expression is 

q = J dr J dt(Jxy(r, c)JxY(O, 0)) 
k B T  0 

(4.1) 

where J x y  is the stress tensor in fluid. Here we follow the simple treatment of Per1 and 
Ferrell(l972) and add to the free energy the following gradient term : 

+ K ( W 2  ( 4 4  
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where K is taken to be finite in this simple treatment. The anomalous contribution AV 
of the shear viscosity arises from the following mode-coupling part of J”’: 

Since I) is denoted also as m, , we find 

(4.3) 

Now, according to the discussion at the end of 9 3, the integrand of (4.4) persists at most 
for the times of the order of is3 and thus we find 

AV - to (4.5) 

which is finite or at most weakly divergent. the result which is known for pure and two- 
component fluids (Kadanoff and Swift 1968, Swift 1968). 

Next we turn our attention to the assumption that only the viscous relaxation enters 
the intermediate states of LIj. The full expression for LIj in the matrix notation that 
includes the relaxation effects of diffusive modes in the intermediate states is 

dkTX(k)”’ . [v*  + T(k)]- . ~ ( k ) ” ’ .  (4.6) 
L=-J - 2 

3(2n)3 k 

First, i t  is clear that critical exponents of E remain unaltered by the presence of T ( k )  
since it contains no divergence, but T(k) cannot be ignored entirely because i t  contains 
finite matrix elements. Next, we consider the elements of L which have previously 
been shown to diverge. Expanding (4.6) formally in powers of T(k) we see that each 
term contains at least one small factor of T in view of (3.28), and hence r(k) in (4.6) can 
be ignored for the diverging matrix elements of L. 

5. Discussion 

In the preceding sections we have shown that tricritical divergences in the Onsager 
kinetic coefficients Lij are ascribed to  the divergence of a single coefficient L; behaving 
as 5 and possibly also the weak divergence of E ; ,  in the representation which dia- 
gonalizes the susceptibility matrix despite the fact that here we have an additional 
critical variable (the non-ordering variable (Riedel 1972)). This is simply due to the fact 
that critical fluctuations associated with the non-ordering variables are not strong enough 
to cause a clear divergence of L i z .  These fluctuations, however, are strong enough to 
make t,, diverge in a representation in which z l 2 ( k )  # 0. In general, when the fluc- 
tuations of the order parameter and those of the non-ordering variables are not statisti- 
cally independent, we need two independent divergent kinetic coefficients L ,  , - < and 
E , ,  5”’ apart from possible weak divergences. If, however, there is a relation 

we have 
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and transport anomalies near the tricritical point can be understood in terms of a single 
diffusion coefficient 

as in normal critical points of multicomponent fluids (Mistura 1972). This is also true if 
the coefficients of the transformation from (mi} to  (mi> are non-singular. At this moment 
we neither know whether this is true nor do we know about the validity of (5.1). It is 
of course simplest if possible to  work throughout with the variables having a diagonal 
susceptibility matrix. In any event we have two ‘degenerate’ diffusion modes whose 
decay rates behave as ( - 3  near the tricritical point. We hope to come back to these 
questions and also to applications of this work to  critical light scattering on another 
occasion. 
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